Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.665
Filtrar
1.
Elife ; 122024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578205

RESUMO

Poly(ADP-ribose)ylation or PARylation by PAR polymerase 1 (PARP1) and dePARylation by poly(ADP-ribose) glycohydrolase (PARG) are equally important for the dynamic regulation of DNA damage response. PARG, the most active dePARylation enzyme, is recruited to sites of DNA damage via pADPr-dependent and PCNA-dependent mechanisms. Targeting dePARylation is considered an alternative strategy to overcome PARP inhibitor resistance. However, precisely how dePARylation functions in normal unperturbed cells remains elusive. To address this challenge, we conducted multiple CRISPR screens and revealed that dePARylation of S phase pADPr by PARG is essential for cell viability. Loss of dePARylation activity initially induced S-phase-specific pADPr signaling, which resulted from unligated Okazaki fragments and eventually led to uncontrolled pADPr accumulation and PARP1/2-dependent cytotoxicity. Moreover, we demonstrated that proteins involved in Okazaki fragment ligation and/or base excision repair regulate pADPr signaling and cell death induced by PARG inhibition. In addition, we determined that PARG expression is critical for cellular sensitivity to PARG inhibition. Additionally, we revealed that PARG is essential for cell survival by suppressing pADPr. Collectively, our data not only identify an essential role for PARG in normal proliferating cells but also provide a potential biomarker for the further development of PARG inhibitors in cancer therapy.


Assuntos
Antineoplásicos , Poli Adenosina Difosfato Ribose , Sobrevivência Celular , Fase S , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/farmacologia
2.
Cell Rep ; 43(3): 113896, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38442018

RESUMO

The ataxia telangiectasia mutated (ATM) protein kinase is a master regulator of the DNA damage response and also an important sensor of oxidative stress. Analysis of gene expression in ataxia-telangiectasia (A-T) patient brain tissue shows that large-scale transcriptional changes occur in patient cerebellum that correlate with the expression level and guanine-cytosine (GC) content of transcribed genes. In human neuron-like cells in culture, we map locations of poly(ADP-ribose) and RNA-DNA hybrid accumulation genome-wide with ATM inhibition and find that these marks also coincide with high transcription levels, active transcription histone marks, and high GC content. Antioxidant treatment reverses the accumulation of R-loops in transcribed regions, consistent with the central role of reactive oxygen species in promoting these lesions. Based on these results, we postulate that transcription-associated lesions accumulate in ATM-deficient cells and that the single-strand breaks and PARylation at these sites ultimately generate changes in transcription that compromise cerebellum function and lead to neurodegeneration over time in A-T patients.


Assuntos
Ataxia Telangiectasia , Poli Adenosina Difosfato Ribose , Humanos , RNA , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , DNA , Ataxia Telangiectasia/genética , Reparo do DNA , Dano ao DNA , Proteínas de Ciclo Celular/metabolismo
3.
FASEB J ; 38(6): e23556, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38498348

RESUMO

PARP-1 over-activation results in cell death via excessive PAR generation in different cell types, including neurons following brain ischemia. Glycolysis, mitochondrial function, and redox balance are key cellular processes altered in brain ischemia. Studies show that PAR generated after PARP-1 over-activation can bind hexokinase-1 (HK-1) and result in glycolytic defects and subsequent mitochondrial dysfunction. HK-1 is the neuronal hexokinase and catalyzes the first reaction of glycolysis, converting glucose to glucose-6-phosphate (G6P), a common substrate for glycolysis, and the pentose phosphate pathway (PPP). PPP is critical in maintaining NADPH and GSH levels via G6P dehydrogenase activity. Therefore, defects in HK-1 will not only decrease cellular bioenergetics but will also cause redox imbalance due to the depletion of GSH. In brain ischemia, whether PAR-mediated inhibition of HK-1 results in bioenergetics defects and redox imbalance is not known. We used oxygen-glucose deprivation (OGD) in mouse cortical neurons to mimic brain ischemia in neuronal cultures and observed that PARP-1 activation via PAR formation alters glycolysis, mitochondrial function, and redox homeostasis in neurons. We used pharmacological inhibition of PARP-1 and adenoviral-mediated overexpression of wild-type HK-1 (wtHK-1) and PAR-binding mutant HK-1 (pbmHK-1). Our data show that PAR inhibition or overexpression of HK-1 significantly improves glycolysis, mitochondrial function, redox homeostasis, and cell survival in mouse cortical neurons exposed to OGD. These results suggest that PAR binding and inhibition of HK-1 during OGD drive bioenergetic defects in neurons due to inhibition of glycolysis and impairment of mitochondrial function.


Assuntos
Isquemia Encefálica , Oxigênio , Camundongos , Animais , Oxigênio/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Glucose/metabolismo , Isquemia Encefálica/metabolismo , Glicólise , Neurônios/metabolismo , Oxirredução
4.
Commun Biol ; 7(1): 162, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38332126

RESUMO

Modulation of cell death is a powerful strategy employed by pathogenic bacteria to evade host immune clearance and occupy profitable replication niches during infection. Intracellular pathogens employ the type III secretion system (T3SS) to deliver effectors, which interfere with regulated cell death pathways to evade immune defenses. Here, we reveal that poly(ADP-ribose) polymerase-1 (PARP1)-dependent cell death restrains Edwardsiella piscicida's proliferation in mouse monocyte macrophages J774A.1, of which PARP1 activation results in the accumulation of poly(ADP-ribose) (PAR) and enhanced inflammatory response. Moreover, E. piscicida, an important intracellular pathogen, leverages a T3SS effector YfiD to impair PARP1's activity and inhibit PAR accumulation. Once translocated into the host nucleus, YfiD binds to the ADP-ribosyl transferase (ART) domain of PARP1 to suppress its PARylation ability as the pharmacological inhibitor of PARP1 behaves. Furthermore, the interaction between YfiD and ART mainly relies on the complete unfolding of the helical domain, which releases the inhibitory effect on ART. In addition, YfiD impairs the inflammatory response and cell death in macrophages and promotes in vivo colonization and virulence of E. piscicida. Collectively, our results establish the functional mechanism of YfiD as a potential PARP1 inhibitor and provide more insights into host defense against bacterial infection.


Assuntos
Edwardsiella , Infecções por Enterobacteriaceae , Animais , Camundongos , Sistemas de Secreção Tipo III/metabolismo , Poli Adenosina Difosfato Ribose , Virulência , Edwardsiella/metabolismo
5.
ACS Chem Biol ; 19(2): 300-307, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38237916

RESUMO

Poly-ADP-ribosylation is an important protein post-translational modification with diverse biological consequences. After binding poly-ADP-ribose on axis inhibition protein 1 (AXIN1) through its WWE domain, RING finger protein 146 (RNF146) can ubiquitinate AXIN1 and promote its proteasomal degradation and thus the oncogenic WNT signaling. Therefore, inhibiting the RNF146 WWE domain is a potential antitumor strategy. However, due to a lack of suitable screening methods, no inhibitors for this domain have been reported. Here, we developed a fluorescence polarization (FP)-based competition assay for the screening of RNF146 WWE inhibitors. This assay relies on a fluorescently tagged iso-ADP-ribose tracer compound, TAMRA-isoADPr. We report the design and synthesis of this tracer compound and show that it is a high-affinity tracer for the RNF146 WWE domain. This provides a convenient assay and will facilitate the development of small-molecule inhibitors for the RNF146 WWE domain.


Assuntos
Adenosina Difosfato Ribose , Poli Adenosina Difosfato Ribose , Adenosina Difosfato Ribose/metabolismo , Poli Adenosina Difosfato Ribose/química , Poli Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional , Via de Sinalização Wnt
6.
J Virol ; 98(2): e0177723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289106

RESUMO

Rubella virus encodes a nonstructural polyprotein with RNA polymerase, methyltransferase, and papain-like cysteine protease activities, along with a putative macrodomain of unknown function. Macrodomains bind ADP-ribose adducts, a post-translational modification that plays a key role in host-virus conflicts. Some macrodomains can also remove the mono-ADP-ribose adduct or degrade poly-ADP-ribose chains. Here, we report high-resolution crystal structures of the macrodomain from rubella virus nonstructural protein p150, with and without ADP-ribose binding. The overall fold is most similar to macroD-type macrodomains from various nonviral species. The specific composition and structure of the residues that coordinate ADP-ribose in the rubella virus macrodomain are most similar to those of macrodomains from alphaviruses. Isothermal calorimetry shows that the rubella virus macrodomain binds ADP-ribose in solution. Enzyme assays show that the rubella virus macrodomain can hydrolyze both mono- and poly-ADP-ribose adducts. Site-directed mutagenesis identifies Asn39 and Cys49 required for mono-ADP-ribosylhydrolase (de-MARylation) activity.IMPORTANCERubella virus remains a global health threat. Rubella infections during pregnancy can cause serious congenital pathology, for which no antiviral treatments are available. Our work demonstrates that, like alpha- and coronaviruses, rubiviruses encode a mono-ADP-ribosylhydrolase with a structurally conserved macrodomain fold to counteract MARylation by poly (ADP-ribose) polymerases (PARPs) in the host innate immune response. Our structural data will guide future efforts to develop novel antiviral therapeutics against rubella or infections with related viruses.


Assuntos
Coronavirus , Rubéola (Sarampo Alemão) , Humanos , Vírus da Rubéola/genética , Vírus da Rubéola/metabolismo , Ribose , Poli(ADP-Ribose) Polimerases/genética , Poli Adenosina Difosfato Ribose , Coronavirus/metabolismo , Adenosina Difosfato Ribose/genética , Adenosina Difosfato Ribose/metabolismo
7.
Biochem Biophys Res Commun ; 692: 149309, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048727

RESUMO

Poly (ADP-ribose) glycohydrolase (PARG) is an enzyme that mainly degrades poly (ADP-ribose) (PAR) synthesized by poly (ADP-ribose) polymerase (PARP) family proteins. Although PARG is involved in many biological phenomena, including DNA repair, cell differentiation, and cell death, little is known about the relationship between osteoclast differentiation and PARG. It has also not been clarified whether PARG is a valuable target for therapeutic agents in the excessive activity of osteoclast-related bone diseases such as osteoporosis. In the present study, we examined the effects of PARG inhibitor PDD00017273 on osteoclast differentiation in RANKL-induced RAW264 cells. PDD00017273 induced the accumulation of intracellular PAR and suppressed the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. PDD00017273 also downregulated osteoclast differentiation marker genes such as Trap, cathepsin K (Ctsk), and dendrocyte expressed seven transmembrane protein (Dcstamp) and protein expression of nuclear factor of activated T cells 1 (NFATc1), a master regulator of osteoclast differentiation. Taken together, our findings suggest that dysfunction of PARG suppresses osteoclast differentiation via the PAR accumulation and partial inactivation of the NFATc1.


Assuntos
Osteoclastos , Ribose , Glicosídeo Hidrolases/metabolismo , Osteoclastos/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Camundongos
8.
DNA Repair (Amst) ; 133: 103593, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029688

RESUMO

To maintain tissue homeostasis, cell proliferation is balanced by cell death. PARP1 is an important protein involved in both processes. Upon sensing DNA damage, PARP1 forms poly(ADP-ribose) (PAR) chains to recruit the repair proteins, ensuring genome integrity and faithful cell proliferation. In addition, PAR also regulates the activity of PARP1. Persistent DNA damage can signal the cell to progress toward programmed cell death, apoptosis. During apoptosis, proteolytic cleavage of PARP1 generates an N-terminal, ZnF1-2PARP1 (DNA binding or regulatory fragment), and C-terminal, PARP1ΔZnF1-2 (catalytic or PAR carrier fragment), which exhibits a basal activity. Regulation of the apoptotic fragments by PAR has not been studied. Here, we report that PAR inhibits the basal level activity of PARP1ΔZnF1-2, and ZnF1-2PARP1 interacts with PARP1ΔZnF1-2 to exhibit DNA-dependent stimulation and partially restores the PAR-dependent stimulation. Interestingly, along with the auto-modification domain of PARP1, the DNA-binding domains, ZnF1-2PARP1, also acts as an acceptor of PARylation; therefore, ZnF1-2PARP1 exhibits a reduced affinity for DNA upon PARylation. Furthermore, we show that ZnF1-2PARP1 shows trans-dominant inhibition of DNA-dependent stimulation of PARP2. Altogether, our study explores the regulation of the catalytic activity of PARP1ΔZnF1-2 and PARP2 by the regulatory apoptotic fragment of PARP1.


Assuntos
DNA , Poli Adenosina Difosfato Ribose , Poli(ADP-Ribose) Polimerase-1/metabolismo , DNA/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli ADP Ribosilação , Reparo do DNA , Dano ao DNA
9.
Am J Physiol Renal Physiol ; 326(1): F69-F85, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855039

RESUMO

Poly(ADP-ribosyl)ation (PARylation), as a posttranslational modification mediated by poly(ADP-ribose) polymerases (PARPs) catalyzing the transfer of ADP-ribose from NAD+ molecules to acceptor proteins, involves a number of cellular processes. As mice lacking the PARP-1 gene (Parp1) produce more urine, we investigated the role of PARP-1, the most prevalent member of the PARP family, in the vasopressin-responsive expression of aquaporin-2 (AQP2). In biotin-conjugated nicotinamide adenine dinucleotide (biotin-NAD+) pulldown and immunoprecipitation assays of poly(ADP)-ribose in mpkCCDc14 cells, immunoblots demonstrated that 1-deamino-8-D-arginine vasopressin (dDAVP) induced the PARylation of total proteins, associated with an increase in the cleavage of PARP-1 and cleaved caspase-3 expression. By inhibiting PARP-1 with siRNA, the abundance of dDAVP-induced AQP2 mRNA and protein was significantly diminished. In contrast, despite a substantial decrease in PARylation, the PARP-1 inhibitor (PJ34) had no effect on the dDAVP-induced regulation of AQP2 expression. The findings suggest that PARP-1 protein expression itself, and not PARP-1-mediated PARylation, is necessary for dDAVP-regulated AQP2 expression. Bioinformatic analysis revealed that 408 proteins interact with PARP-1 in the collecting duct (CD) cells of the kidney. Among them, the signaling pathway of the vasopressin V2 receptor was identified for 49 proteins. In particular, ß-catenin, which is phosphorylated at Ser552 by dDAVP, was identified as the PARP-1-interacting protein. A significant decrease of ß-catenin phosphorylation (Ser552) in response to dDAVP was associated with siRNA-mediated PARP-1 knockdown. Taken together, PARP-1 is likely to play a role in vasopressin-induced AQP2 expression by interacting with ß-catenin in renal CD cells.NEW & NOTEWORTHY The poly(ADP-ribose) polymerase (PARP) family catalyzes poly(ADP-ribosylation) (PARylation), which is one of the posttranslational modifications of largely undetermined physiological significance. This study investigated the role of PARP-1, the most prevalent member of the PARP family, in the vasopressin-responsive expression of aquaporin-2 (AQP2). The results demonstrated that PARP-1 protein expression itself, and not PARP-1-mediated PARylation, is necessary for dDAVP-regulated AQP2 expression. ß-Catenin, which is phosphorylated at Ser552 by dDAVP, was identified as the PARP-1-interacting protein.


Assuntos
Aquaporina 2 , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Camundongos , Aquaporina 2/genética , beta Catenina/metabolismo , Biotina/metabolismo , Desamino Arginina Vasopressina/farmacologia , Rim/metabolismo , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Interferente Pequeno , Vasopressinas/farmacologia , Vasopressinas/metabolismo
10.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139034

RESUMO

Hepatocellular carcinoma (HCC) is a major global health concern, representing one of the leading causes of cancer-related deaths. Despite various treatment options, the prognosis for HCC patients remains poor, emphasizing the need for a deeper understanding of the factors contributing to HCC development. This study investigates the role of poly(ADP-ribosyl)ation in hepatocyte maturation and its impact on hepatobiliary carcinogenesis. A conditional Parg knockout mouse model was employed, utilizing Cre recombinase under the albumin promoter to target Parg depletion specifically in hepatocytes. The disruption of the poly(ADP-ribosyl)ating pathway in hepatocytes affects the early postnatal liver development. The inability of hepatocytes to finish the late maturation step that occurs early after birth causes intensive apoptosis and acute inflammation, resulting in hypertrophic liver tissue with enlarged hepatocytes. Regeneration nodes with proliferative hepatocytes eventually replace the liver tissue and successfully fulfill the liver function. However, early developmental changes predispose these types of liver to develop pathologies, including with a malignant nature, later in life. In a chemically induced liver cancer model, Parg-depleted livers displayed a higher tendency for hepatocellular carcinoma development. This study underscores the critical role of the poly(ADP-ribosyl)ating pathway in hepatocyte maturation and highlights its involvement in liver pathologies and hepatobiliary carcinogenesis. Understanding these processes may provide valuable insights into liver biology and liver-related diseases, including cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Lesões Pré-Cancerosas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Hepatócitos/metabolismo , Lesões Pré-Cancerosas/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Glicosídeo Hidrolases/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Mamíferos/metabolismo
11.
Curr Protoc ; 3(12): e958, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38147359

RESUMO

Bispecific antibodies have drawn considerate research interests for therapeutic development. Numerous genetic and chemical methods are established to produce bispecific antibodies with varied formats. This protocol describes a novel approach to the synthesis of bispecific antibodies by utilizing chemically functionalized poly-ADP-ribose polymers derived from post-translational poly-ADP-ribosylation. Basic Protocol 1 includes experimental procedures for expressing and purifying recombinant full-length human poly-ADP-ribose polymerase 1 (PARP1) as well as monoclonal antibodies targeting T-cell CD3 and breast cancer tumor-associated human epidermal growth factor receptor 2 (HER2) molecules. Basic Protocol 2 details methods for enzymatic preparation of functionalized poly-ADP-ribose polymers by PARP1 and chemical conjugation of antibody molecules for bispecific antibody production. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Expression and purification of PARP1 and antibodies Basic Protocol 2: PARP1 auto-modification and antibody conjugation.


Assuntos
Anticorpos Biespecíficos , Neoplasias Mamárias Animais , Humanos , Animais , Anticorpos Monoclonais , Poli Adenosina Difosfato Ribose , Polímeros
12.
Nucleic Acids Res ; 51(22): 12492-12507, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37971310

RESUMO

PARP4 is an ADP-ribosyltransferase that resides within the vault ribonucleoprotein organelle. Our knowledge of PARP4 structure and biochemistry is limited relative to other PARPs. PARP4 shares a region of homology with PARP1, an ADP-ribosyltransferase that produces poly(ADP-ribose) from NAD+ in response to binding DNA breaks. The PARP1-homology region of PARP4 includes a BRCT fold, a WGR domain, and the catalytic (CAT) domain. Here, we have determined X-ray structures of the PARP4 catalytic domain and performed biochemical analysis that together indicate an active site that is open to NAD+ interaction, in contrast to the closed conformation of the PARP1 catalytic domain that blocks access to substrate NAD+. We have also determined crystal structures of the minimal ADP-ribosyltransferase fold of PARP4 that illustrate active site alterations that restrict PARP4 to mono(ADP-ribose) rather than poly(ADP-ribose) modifications. We demonstrate that PARP4 interacts with vault RNA, and that the BRCT is primarily responsible for the interaction. However, the interaction does not lead to stimulation of mono(ADP-ribosylation) activity. The BRCT-WGR-CAT of PARP4 has lower activity than the CAT alone, suggesting that the BRCT and WGR domains regulate catalytic output. Our study provides first insights into PARP4 structure and regulation and expands understanding of PARP structural biochemistry.


Assuntos
Poli Adenosina Difosfato Ribose , Poli(ADP-Ribose) Polimerases , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/química , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/metabolismo , Humanos
13.
Artigo em Inglês | MEDLINE | ID: mdl-37973295

RESUMO

Sulfoquinovosyl acylpropanediol (SQAP; a synthetic derivative of the sulfoglycolipid natural product sulfoquinovosyl acylglycerol, SQAG), has anti-tumor and radiosensitizing activities in tumor xenograft mouse models. Here, we have studied the PARP inhibitory activity of SQAP and synthetic lethality in BRCA2-deficient cells. In initial screening studies with DNA repair-deficient Chinese hamster ovary cells, homologous recombination repair-deficient cell lines showed increased sensitivity to SQAP, compared to wild-type cells or other DNA repair-deficient mutants. Chinese hamster lung V79 cells and the derivative cell lines V-C8 (BRCA2-deficient) and V-C8 + BRCA2 gene corrections were used to test the role of BRCA2 in SQAP cytotoxicity. The findings were confirmed in studies of the human colon cancer cell lines DLD-1 and its BRCA2-knockout derivative. SQAP inhibited the enzymes poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG). SQAP pretreatment decreased H2O2induced poly(ADP-ribose) formation in V79 cells. SQAP caused DNA double-strand breaks and chromosome aberrations in V79 BRCA2-mutated cells but did not affect cells in the G2 phase. We have demonstrated that SQAP induces synthetic lethality in BRCA2-deficient Chinese hamster-derived cells via its effects on poly(ADP-ribose) metabolism, motivating further examination of its therapeutic potential, especially against tumors that are deficient in homologous recombination repair due to mutations in BRCA2 or other genes.


Assuntos
Neoplasias , Poli Adenosina Difosfato Ribose , Cricetinae , Humanos , Animais , Camundongos , Cricetulus , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo de DNA por Recombinação , Células CHO , Reparo do DNA , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias/genética , Recombinação Homóloga
14.
Sci Rep ; 13(1): 20320, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985852

RESUMO

Metabolism, known to be temporally regulated to meet evolving energy demands, plays a crucial role in shaping developmental pace. Recent studies have demonstrated that two key proteins PARP1 and PARG play a regulatory role in the transcription of both morphogenic and metabolic genes. Intriguingly, in Drosophila, the depletion of PARP1 or PARG proteins causes a developmental arrest before pupation, resulting in individuals unable to complete their development. This phenotype highlights the critical involvement of poly(ADP-ribosyl)ating enzymes in regulating the metamorphic process. In this study, we provide compelling evidence that these enzymes intricately coordinate transcriptional changes in both developmental and metabolic pathways during metamorphosis. Specifically, they promote the expression of genes crucial for pupation, while simultaneously negatively regulating the expression of metabolic genes before the transition to the pupal stage. Additionally, these enzymes suppress the expression of genes that are no longer required during this transformative period. Our findings shed light on the intricate interplay between poly(ADP-ribosyl)ating enzymes, developmental processes, and metabolic regulation before metamorphosis and highlight a new role of poly(ADP-ribosyl)ating enzymes in the global regulation of transcription.


Assuntos
Glicosídeo Hidrolases , Poli(ADP-Ribose) Polimerases , Animais , Humanos , Glicosídeo Hidrolases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Fenótipo , Drosophila/genética , Poli Adenosina Difosfato Ribose/metabolismo
15.
Nucleic Acids Res ; 51(20): 11056-11079, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37823600

RESUMO

Zinc finger (ZNF) motifs are some of the most frequently occurring domains in the human genome. It was only recently that ZNF proteins emerged as key regulators of genome integrity in mammalian cells. In this study, we report a new role for the Krüppel-type ZNF-containing protein ZNF432 as a novel poly(ADP-ribose) (PAR) reader that regulates the DNA damage response. We show that ZNF432 is recruited to DNA lesions via DNA- and PAR-dependent mechanisms. Remarkably, ZNF432 stimulates PARP-1 activity in vitro and in cellulo. Knockdown of ZNF432 inhibits phospho-DNA-PKcs and increases RAD51 foci formation following irradiation. Moreover, purified ZNF432 preferentially binds single-stranded DNA and impairs EXO1-mediated DNA resection. Consequently, the loss of ZNF432 in a cellular system leads to resistance to PARP inhibitors while its overexpression results in sensitivity. Taken together, our results support the emerging concept that ZNF-containing proteins can modulate PARylation, which can be embodied by the pivotal role of ZNF432 to finely balance the outcome of PARPi response by regulating homologous recombination.


Assuntos
Poli ADP Ribosilação , Poli Adenosina Difosfato Ribose , Humanos , DNA/genética , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo
16.
EMBO Rep ; 24(11): e56166, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870275

RESUMO

ZNF746 was identified as parkin-interacting substrate (PARIS). Investigating its pathophysiological properties, we find that PARIS undergoes liquid-liquid phase separation (LLPS) and amorphous solid formation. The N-terminal low complexity domain 1 (LCD1) of PARIS is required for LLPS, whereas the C-terminal prion-like domain (PrLD) drives the transition from liquid to solid phase. In addition, we observe that poly(ADP-ribose) (PAR) strongly binds to the C-terminus of PARIS near the PrLD, accelerating its LLPS and solidification. N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PAR formation leads to PARIS oligomerization in human iPSC-derived dopaminergic neurons that is prevented by the PARP inhibitor, ABT-888. Furthermore, SDS-resistant PARIS species are observed in the substantia nigra (SN) of aged mice overexpressing wild-type PARIS, but not with a PAR binding-deficient PARIS mutant. PARIS solidification is also found in the SN of mice injected with preformed fibrils of α-synuclein (α-syn PFF) and adult mice with a conditional knockout (KO) of parkin, but not if α-syn PFF is injected into mice deficient for PARP1. Herein, we demonstrate that PARIS undergoes LLPS and PAR-mediated solidification in models of Parkinson's disease.


Assuntos
Doença de Parkinson , Poli Adenosina Difosfato Ribose , Animais , Humanos , Camundongos , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
17.
J Biol Chem ; 299(11): 105354, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858678

RESUMO

O-linked N-acetylglucosamine (O-GlcNAc) glycosylation, a prevalent protein post-translational modification (PTM) that occurs intracellularly, has been shown to crosstalk with phosphorylation and ubiquitination. However, it is unclear whether it interplays with other PTMs. Here we studied its relationship with ADP-ribosylation, which involves decorating target proteins with the ADP-ribose moiety. We discovered that the poly(ADP-ribosyl)ation "eraser", ADP-ribose glycohydrolase (PARG), is O-GlcNAcylated at Ser26, which is in close proximity to its nuclear localization signal. O-GlcNAcylation of PARG promotes nuclear localization and chromatin association. Upon DNA damage, O-GlcNAcylation augments the recruitment of PARG to DNA damage sites and interacting with proliferating cell nuclear antigen (PCNA). In hepatocellular carcinoma (HCC) cells, PARG O-GlcNAcylation enhances the poly(ADP-ribosyl)ation of DNA damage-binding protein 1 (DDB1) and attenuates its auto-ubiquitination, thereby stabilizing DDB1 and allowing it to degrade its downstream targets, such as c-Myc. We further demonstrated that PARG-S26A, the O-GlcNAc-deficient mutant, promoted HCC in mouse xenograft models. Our findings thus reveal that PARG O-GlcNAcylation inhibits HCC, and we propose that O-GlcNAc glycosylation may crosstalk with many other PTMs.


Assuntos
Carcinoma Hepatocelular , Glicosídeo Hidrolases , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Acetilglucosamina , ADP-Ribosilação , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Glicosilação , Processamento de Proteína Pós-Traducional
18.
Cell Rep ; 42(10): 113199, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804508

RESUMO

PARP-1 activation at DNA damage sites leads to the synthesis of long poly(ADP-ribose) (PAR) chains, which serve as a signal for DNA repair. Here we show that FUS, an RNA-binding protein, is specifically directed to PAR through its RNA recognition motif (RRM) to increase PAR synthesis by PARP-1 in HeLa cells after genotoxic stress. Using a structural approach, we also identify specific residues located in the FUS RRM, which can be PARylated by PARP-1 to control the level of PAR synthesis. Based on the results of this work, we propose a model in which, following a transcriptional arrest that releases FUS from nascent mRNA, FUS can be recruited by PARP-1 activated by DNA damage to stimulate PAR synthesis. We anticipate that this model offers new perspectives to understand the role of FET proteins in cancers and in certain neurodegenerative diseases such as amyotrophic lateral sclerosis.


Assuntos
Dano ao DNA , Poli Adenosina Difosfato Ribose , Poli(ADP-Ribose) Polimerases , Proteína FUS de Ligação a RNA , Humanos , Reparo do DNA , Células HeLa , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Motivo de Reconhecimento de RNA , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
19.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686260

RESUMO

ETS transcription factors are a highly conserved family of proteins involved in the progression of many cancers, such as breast and prostate carcinomas, Ewing's sarcoma, and leukaemias. This significant involvement can be explained by their roles at all stages of carcinogenesis progression. Generally, their expression in tumours is associated with a poor prognosis and an aggressive phenotype. Until now, no efficient therapeutic strategy had emerged to specifically target ETS-expressing tumours. Nevertheless, there is evidence that pharmacological inhibition of poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, specifically sensitises ETS-expressing cancer cells to DNA damage and limits tumour progression by leading some of the cancer cells to death. These effects result from a strong interplay between ETS transcription factors and the PARP-1 enzyme. This review summarises the existing knowledge of this molecular interaction and discusses the promising therapeutic applications.


Assuntos
Leucemia , Neoplasias da Próstata , Sarcoma de Ewing , Humanos , Poli Adenosina Difosfato Ribose , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
20.
Biomolecules ; 13(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37627260

RESUMO

Poly(ADP-ribose) (PAR) Polymerase 1 (PARP-1), also known as ADP-ribosyl transferase with diphtheria toxin homology 1 (ARTD-1), is a critical player in DNA damage repair, during which it catalyzes the ADP ribosylation of self and target enzymes. While the nuclear localization of PARP-1 has been well established, recent studies also suggest its mitochondrial localization. In this review, we summarize the differences between mitochondrial and nuclear Base Excision Repair (BER) pathways, the involvement of PARP-1 in mitochondrial and nuclear BER, and its functional interplay with other BER enzymes.


Assuntos
Reparo do DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Mitocôndrias , Poli Adenosina Difosfato Ribose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...